Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.478
Filtrar
1.
Nature ; 628(8009): 835-843, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38600381

RESUMO

Severe influenza A virus (IAV) infections can result in hyper-inflammation, lung injury and acute respiratory distress syndrome1-5 (ARDS), for which there are no effective pharmacological therapies. Necroptosis is an attractive entry point for therapeutic intervention in ARDS and related inflammatory conditions because it drives pathogenic lung inflammation and lethality during severe IAV infection6-8 and can potentially be targeted by receptor interacting protein kinase 3 (RIPK3) inhibitors. Here we show that a newly developed RIPK3 inhibitor, UH15-38, potently and selectively blocked IAV-triggered necroptosis in alveolar epithelial cells in vivo. UH15-38 ameliorated lung inflammation and prevented mortality following infection with laboratory-adapted and pandemic strains of IAV, without compromising antiviral adaptive immune responses or impeding viral clearance. UH15-38 displayed robust therapeutic efficacy even when administered late in the course of infection, suggesting that RIPK3 blockade may provide clinical benefit in patients with IAV-driven ARDS and other hyper-inflammatory pathologies.


Assuntos
Necroptose , Infecções por Orthomyxoviridae , Proteína Serina-Treonina Quinases de Interação com Receptores , Animais , Necroptose/efeitos dos fármacos , Camundongos , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Infecções por Orthomyxoviridae/complicações , Feminino , Masculino , Humanos , Lesão Pulmonar/prevenção & controle , Lesão Pulmonar/virologia , Lesão Pulmonar/patologia , Lesão Pulmonar/tratamento farmacológico , Vírus da Influenza A/fisiologia , Vírus da Influenza A/efeitos dos fármacos , Células Epiteliais Alveolares/patologia , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/virologia , Células Epiteliais Alveolares/metabolismo , Camundongos Endogâmicos C57BL , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Influenza Humana/virologia , Influenza Humana/tratamento farmacológico , Síndrome do Desconforto Respiratório/virologia , Síndrome do Desconforto Respiratório/prevenção & controle , Síndrome do Desconforto Respiratório/patologia , Síndrome do Desconforto Respiratório/tratamento farmacológico
2.
BMC Biotechnol ; 24(1): 13, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459479

RESUMO

OBJECTIVE: Smoking was a major risk factor for chronic obstructive pulmonary disease (COPD). This study plan to explore the mechanism of Polyphyllin B in lung injury induced by cigarette smoke (CSE) in COPD. METHODS: Network pharmacology and molecular docking were applied to analyze the potential binding targets for Polyphyllin B and COPD. Commercial unfiltered CSE and LPS were used to construct BEAS-2B cell injury in vitro and COPD mouse models in vivo, respectively, which were treated with Polyphyllin B or fecal microbiota transplantation (FMT). CCK8, LDH and calcein-AM were used to detect the cell proliferation, LDH level and labile iron pool. Lung histopathology, Fe3+ deposition and mitochondrial morphology were observed by hematoxylin-eosin, Prussian blue staining and transmission electron microscope, respectively. ELISA was used to measure inflammation and oxidative stress levels in cells and lung tissues. Immunohistochemistry and immunofluorescence were applied to analyze the 4-HNE, LC3 and Ferritin expression. RT-qPCR was used to detect the expression of FcRn, pIgR, STAT3 and NCOA4. Western blot was used to detect the expression of Ferritin, p-STAT3/STAT3, NCOA4, GPX4, TLR2, TLR4 and P65 proteins. 16S rRNA gene sequencing was applied to detect the gut microbiota. RESULTS: Polyphyllin B had a good binding affinity with STAT3 protein, which as a target gene in COPD. Polyphyllin B inhibited CS-induced oxidative stress, inflammation, mitochondrial damage, and ferritinophagy in COPD mice. 16S rRNA sequencing and FMT confirmed that Akkermansia and Escherichia_Shigella might be the potential microbiota for Polyphyllin B and FMT to improve CSE and LPS-induced COPD, which were exhausted by the antibiotics in C + L and C + L + P mice. CSE and LPS induced the decrease of cell viability and the ferritin and LC3 expression, and the increase of NCOA4 and p-STAT3 expression in BEAS-2B cells, which were inhibited by Polyphyllin B. Polyphyllin B promoted ferritin and LC3II/I expression, and inhibited p-STAT3 and NCOA4 expression in CSE + LPS-induced BEAS-2B cells. CONCLUSION: Polyphyllin B improved gut microbiota disorder and inhibited STAT3/NCOA4 pathway to ameliorate lung tissue injury in CSE and LPS-induced mice.


Assuntos
Fumar Cigarros , Microbioma Gastrointestinal , Lesão Pulmonar , Doença Pulmonar Obstrutiva Crônica , Animais , Camundongos , Linhagem Celular , Fumar Cigarros/efeitos adversos , Ferritinas/metabolismo , Inflamação/patologia , Lipopolissacarídeos/efeitos adversos , Pulmão , Lesão Pulmonar/complicações , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Simulação de Acoplamento Molecular , Doença Pulmonar Obstrutiva Crônica/terapia , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , RNA Ribossômico 16S , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
3.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L562-L573, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38469626

RESUMO

Acute respiratory distress syndrome (ARDS) is characterized by dysregulated inflammation and increased permeability of lung microvascular cells. CD26/dipeptidyl peptidase-4 (DPP4) is a type II membrane protein that is expressed in several cell types and mediates multiple pleiotropic effects. We previously reported that DPP4 inhibition by sitagliptin attenuates lipopolysaccharide (LPS)-induced lung injury in mice. The current study characterized the functional role of CD26/DPP4 expression in LPS-induced lung injury in mice, isolated alveolar macrophages, and cultured lung endothelial cells. In LPS-induced lung injury, inflammatory responses [bronchoalveolar lavage fluid (BALF) neutrophil numbers and several proinflammatory cytokine levels] were attenuated in Dpp4 knockout (Dpp4 KO) mice. However, multiple assays of alveolar capillary permeability were similar between the Dpp4 KO and wild-type mice. TNF-α and IL-6 production was suppressed in alveolar macrophages isolated from Dpp4 KO mice. In contrast, in cultured mouse lung microvascular endothelial cells (MLMVECs), reduction in CD26/DPP4 expression by siRNA resulted in greater ICAM-1 and IL-6 expression after LPS stimulation. Moreover, the LPS-induced vascular monolayer permeability in vitro was higher in MLMVECs treated with Dpp4 siRNA, suggesting that CD26/DPP4 plays a protective role in endothelial barrier function. In summary, this study demonstrated that genetic deficiency of Dpp4 attenuates inflammatory responses but not permeability in LPS-induced lung injury in mice, potentially through differential functional roles of CD26/DPP4 expression in resident cellular components of the lung. CD26/DPP4 may be a potential therapeutic target for ARDS and warrants further exploration to precisely identify the multiple functional effects of CD26/DPP4 in ARDS pathophysiology.NEW & NOTEWORTHY We aimed to clarify the functional roles of CD26/DPP4 in ARDS pathophysiology using Dpp4-deficient mice and siRNA reduction techniques in cultured lung cells. Our results suggest that CD26/DPP4 expression plays a proinflammatory role in alveolar macrophages while also playing a protective role in the endothelial barrier. Dpp4 genetic deficiency attenuates inflammatory responses but not permeability in LPS-induced lung injury in mice, potentially through differential roles of CD26/DPP4 expression in the resident cellular components of the lung.


Assuntos
Dipeptidil Peptidase 4 , Lipopolissacarídeos , Macrófagos Alveolares , Camundongos Knockout , Animais , Dipeptidil Peptidase 4/metabolismo , Dipeptidil Peptidase 4/genética , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patologia , Camundongos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Camundongos Endogâmicos C57BL , Pulmão/patologia , Pulmão/metabolismo , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/patologia , Síndrome do Desconforto Respiratório/induzido quimicamente , Interleucina-6/metabolismo , Interleucina-6/genética , Masculino , Permeabilidade Capilar , Molécula 1 de Adesão Intercelular/metabolismo , Molécula 1 de Adesão Intercelular/genética , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Fator de Necrose Tumoral alfa/metabolismo , Líquido da Lavagem Broncoalveolar , Células Cultivadas
4.
Am J Pathol ; 194(5): 656-672, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38325552

RESUMO

Idiopathic pulmonary fibrosis is a progressive interstitial lung disease for which there is no curative therapy available. Repetitive alveolar epithelial injury repair, myofibroblast accumulation, and excessive collagen deposition are key pathologic features of idiopathic pulmonary fibrosis, eventually leading to cellular hypoxia and respiratory failure. The precise mechanism driving this complex maladaptive process remains inadequately understood. WD repeat and suppressor of cytokine signaling box containing 1 (WSB1) is an E3 ubiquitin ligase, the expression of which is associated strongly with hypoxia, and forms a positive feedback loop with hypoxia-inducible factor 1α (HIF-1α) under anoxic condition. This study explored the expression, cellular distribution, and function of WSB1 in bleomycin (BLM)-induced mouse lung injury and fibrosis. WSB1 expression was highly induced by BLM injury and correlated with the progression of lung fibrosis. Significantly, conditional deletion of Wsb1 in adult mice ameliorated BLM-induced pulmonary fibrosis. Phenotypically, Wsb1-deficient mice showed reduced lipofibroblast to myofibroblast transition, but enhanced alveolar type 2 proliferation and differentiation into alveolar type 1 after BLM injury. Proteomic analysis of mouse lung tissues identified caveolin 2 as a potential downstream target of WSB1, contributing to BLM-induced epithelial injury repair and fibrosis. These findings unravel a vital role for WSB1 induction in lung injury repair, thus highlighting it as a potential therapeutic target for pulmonary fibrosis.


Assuntos
Fibrose Pulmonar Idiopática , Lesão Pulmonar , Animais , Camundongos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Miofibroblastos/metabolismo , Lesão Pulmonar/patologia , Proteômica , Pulmão/patologia , Fibrose , Hipóxia/patologia , Fibrose Pulmonar Idiopática/patologia , Bleomicina/toxicidade , Regeneração , Peptídeos e Proteínas de Sinalização Intracelular
5.
Front Immunol ; 15: 1328453, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38343548

RESUMO

Lung infection by influenza A virus (IAV) is a major cause of global mortality from lung injury, a disease defined by widespread dysfunction of the lung's air-blood barrier. Endocytosis of IAV virions by the alveolar epithelium - the cells that determine barrier function - is central to barrier loss mechanisms. Here, we address the current understanding of the mechanistic steps that lead to endocytosis in the alveolar epithelium, with an eye to how the unique structure of lung alveoli shapes endocytic mechanisms. We highlight where future studies of alveolar interactions with IAV virions may lead to new therapeutic approaches for IAV-induced lung injury.


Assuntos
Vírus da Influenza A , Influenza Humana , Lesão Pulmonar , Humanos , Barreira Alveolocapilar , Influenza Humana/patologia , Lesão Pulmonar/patologia , Pulmão/patologia , Endocitose
6.
Part Fibre Toxicol ; 21(1): 8, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38409078

RESUMO

BACKGROUND: Inhalation of airborne particulate matter, such as silica and diesel exhaust particles, poses serious long-term respiratory and systemic health risks. Silica exposure can lead to silicosis and systemic autoimmune diseases, while DEP exposure is linked to asthma and cancer. Combined exposure to silica and DEP, common in mining, may have more severe effects. This study investigates the separate and combined effects of occupational-level silica and ambient-level DEP on lung injury, inflammation, and autoantibody formation in two genetically distinct mouse strains, thereby aiming at understanding the interplay between genetic susceptibility, particulate exposure, and disease outcomes. Silica and diesel exhaust particles were administered to mice via oropharyngeal aspiration. Assessments of lung injury and host response included in vivo lung micro-computed tomography, lung function tests, bronchoalveolar lavage fluid analysis including inflammatory cytokines and antinuclear antibodies, and histopathology with particle colocalization. RESULTS: The findings highlight the distinct effects of silica and diesel exhaust particles (DEP) on lung injury, inflammation, and autoantibody formation in C57BL/6J and NOD/ShiLtJ mice. Silica exposure elicited a well-established inflammatory response marked by inflammatory infiltrates, release of cytokines, and chemokines, alongside mild fibrosis, indicated by collagen deposition in the lungs of both C57BL/6J and NOD/ShilLtJ mice. Notably, these strains exhibited divergent responses in terms of respiratory function and lung volumes, as assessed through micro-computed tomography. Additionally, silica exposure induced airway hyperreactivity and elevated antinuclear antibody levels in bronchoalveolar lavage fluid, particularly prominent in NOD/ShiLtJ mice. Moreover, antinuclear antibodies correlated with extent of lung inflammation in NOD/ShiLTJ mice. Lung tissue analysis revealed DEP loaded macrophages and co-localization of silica and DEP particles. However, aside from contributing to airway hyperreactivity specifically in NOD/ShiLtJ mice, the ambient-level DEP did not significantly amplify the effects induced by silica. There was no evidence of synergistic or additive interaction between these specific doses of silica and DEP in inducing lung damage or inflammation in either of the mouse strains. CONCLUSION: Mouse strain variations exerted a substantial influence on the development of silica induced lung alterations. Furthermore, the additional impact of ambient-level DEP on these silica-induced effects was minimal.


Assuntos
Asma , Lesão Pulmonar , Camundongos , Animais , Emissões de Veículos/toxicidade , Lesão Pulmonar/patologia , Dióxido de Silício/toxicidade , Autoanticorpos/farmacologia , Anticorpos Antinucleares/farmacologia , Microtomografia por Raio-X , Camundongos Endogâmicos NOD , Camundongos Endogâmicos C57BL , Pulmão , Citocinas/genética , Líquido da Lavagem Broncoalveolar , Inflamação/patologia , Material Particulado/toxicidade
7.
Radiother Oncol ; 192: 110106, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38253201

RESUMO

BACKGROUND AND PURPOSE: Radiomics is a rapidly evolving area of research that uses medical images to develop prognostic and predictive imaging biomarkers. In this study, we aimed to identify radiomics features correlated with longitudinal biomarkers in preclinical models of acute inflammatory and late fibrotic phenotypes following irradiation. MATERIALS AND METHODS: Female C3H/HeN and C57BL6 mice were irradiated with 20 Gy targeting the upper lobe of the right lung under cone-beam computed tomography (CBCT) image-guidance. Blood samples and lung tissue were collected at baseline, weeks 1, 10 & 30 to assess changes in serum cytokines and histological biomarkers. The right lung was segmented on longitudinal CBCT scans using ITK-SNAP. Unfiltered and filtered (wavelet) radiomics features (n = 842) were extracted using PyRadiomics. Longitudinal changes were assessed by delta analysis and principal component analysis (PCA) was used to remove redundancy and identify clustering. Prediction of acute (week 1) and late responses (weeks 20 & 30) was performed through deep learning using the Random Forest Classifier (RFC) model. RESULTS: Radiomics features were identified that correlated with inflammatory and fibrotic phenotypes. Predictive features for fibrosis were detected from PCA at 10 weeks yet overt tissue density was not detectable until 30 weeks. RFC prediction models trained on 5 features were created for inflammation (AUC 0.88), early-detection of fibrosis (AUC 0.79) and established fibrosis (AUC 0.96). CONCLUSIONS: This study demonstrates the application of deep learning radiomics to establish predictive models of acute and late lung injury. This approach supports the wider application of radiomics as a non-invasive tool for detection of radiation-induced lung complications.


Assuntos
Lesão Pulmonar , Neoplasias Pulmonares , Lesões por Radiação , Feminino , Animais , Camundongos , Neoplasias Pulmonares/patologia , Lesão Pulmonar/diagnóstico por imagem , Lesão Pulmonar/etiologia , Lesão Pulmonar/patologia , 60570 , Tomografia Computadorizada por Raios X/métodos , Estudos Retrospectivos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos C3H , Pulmão/diagnóstico por imagem , Pulmão/patologia , Lesões por Radiação/patologia , Biomarcadores , Fibrose
8.
Biochem Biophys Res Commun ; 695: 149441, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38176174

RESUMO

Low-density lipoprotein receptor-related protein 6 (LRP6) is a receptor protein for Wnt ligands. Yet, their role in immune cell regulation remains elusive. Here we demonstrated that genetic deletion of LRP6 in macrophages using LysM-cre Lrp6fl/fl (Lrp6MKO) mice showed differential inhibition of inflammation in the bleomycin (BLM)-induced lung injury model and B16F10 melanoma lung metastasis model. Lrp6MKO mice showed normal immune cell populations in the lung and circulating blood in homeostatic conditions. In the BLM-induced lung injury model, Lrp6MKO mice showed a decreased number of monocyte-derived alveolar macrophages, reduced collagen deposition and alpha-smooth muscle actin (αSMA) protein levels in the lung. In B16F10 lung metastasis model, Lrp6MKO mice reduced lung tumor foci. Monocytic and granulocytic-derived myeloid-derived suppressor cells (M-MDSCs and G-MDSCs) were increased in the lung. In G-MDSCs, hypoxia-inducible factor 1α (HIF1α)+ PDL1+ population was markedly decreased but not in M-MDSCs. Taken together, our results show that the role of LRP6 in macrophages is differential depending on the inflammation microenvironment in the lung.


Assuntos
Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Lesão Pulmonar , Neoplasias Pulmonares , Pneumonia , Animais , Camundongos , Bleomicina , Inflamação/genética , Inflamação/patologia , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Pulmão/patologia , Lesão Pulmonar/genética , Lesão Pulmonar/patologia , Neoplasias Pulmonares/patologia , Macrófagos/metabolismo , Pneumonia/patologia , Microambiente Tumoral
9.
Environ Int ; 183: 108422, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38217903

RESUMO

Ozone (O3) is one of the most harmful pollutants affecting health. However, the potential effects of O3 exposure on microbes in the gut-lung axis related to lung injuries remain elusive. In this study, female mice were exposed to 0-, 0.5- and 1-ppm O3 for 28 days, followed by routine blood tests, lung function tests and histopathological examination of the colon, nasal cavity and lung. Mouse faeces and lungs were collected for 16s rRNA sequencing to assess the overall microbiological profile and screen for key differential enriched microbes (DEMs). The key DEMs in faecal samples were Butyricimonas, Rikenellaceae RC9 and Escherichia-Shigella, whereas those in lung samples were DNF00809, Fluviicola, Bryobacter, Family XII AD3011 group, Sharpea, MND1 and unclassified Phycisphaeraceae. After a search in microbe-disease databases, these key DEMs were found to be associated with lung diseases such as lung neoplasms, cystic fibrosis, pneumonia, chronic obstructive pulmonary disease, respiratory distress syndrome and bronchiectasis. Subsequently, we used transcriptomic data from Gene Expression Omnibus (GEO) with exposure conditions similar to those in this study to cross-reference with Comparative Toxicogenomic Database (CTD). Il-6 and Ccl2 were identified as the key causative genes and were validated. The findings of this study suggest that exposure to O3 leads to significant changes in the microbial composition of the gut and lungs. These changes are associated with increased levels of inflammatory factors in the lungs and impaired lung function, resulting in an increased risk of lung disease. Altogether, this study provides novel insights into the role of microbes present in the gut-lung axis in O3 exposure-induced lung injury.


Assuntos
Lesão Pulmonar , Ozônio , Pneumonia , Camundongos , Feminino , Animais , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , RNA Ribossômico 16S , Pulmão , Pneumonia/induzido quimicamente , Ozônio/toxicidade
10.
Leg Med (Tokyo) ; 67: 102335, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37951808

RESUMO

The effects of a PPAR-γ agonist, pioglitazone and Zataria multiflora (Z. multiflora) on inhaled paraquat (PQ)-induced lung oxidative stress, inflammation, pathological changes and tracheal responsiveness were examined. The study was carried out in control rats exposed to normal aerosol of saline, PQl and PQh groups exposed to aerosols of 27 and 54 mg/m3 PQ, groups exposed to high PQ concentration (PQh) and treated with 200 and 800 mg/kg/day Z. multiflora, 5 and 10 mg/kg/day pioglitazone, low doses of Z. multiflora + pioglitazone, and 0.03 mg/kg/day dexamethasone. Increased tracheal responsiveness, transforming growth factor beta (TGF-ß) and lung pathological changes due to PQh were significantly improved by high doses of Z. multiflora and pioglitazone, dexamethasone and extract + pioglitazone, (p < 0.05 to p < 0.001). In group treated with low doses of the extract + pioglitazone, the improvements of most measured variables were significantly higher than the low dose of two agents alone (p < 0.05 to p < 0.001). Z. multiflora improved lung injury induced by inhaled PQ similar to dexamethasone and pioglitazone which could be mediated by PPAR-γ receptor.


Assuntos
Lesão Pulmonar , Paraquat , Animais , Ratos , Dexametasona/farmacologia , Pulmão/metabolismo , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Paraquat/toxicidade , Pioglitazona/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , PPAR gama/agonistas , PPAR gama/metabolismo
11.
J Heart Lung Transplant ; 43(2): 284-292, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37852513

RESUMO

BACKGROUND: No proven treatment after the development of primary graft dysfunction (PGD) is currently available. Here, we established a novel strategy of in vivo lung perfusion (IVLP) for the treatment of PGD. IVLP involves the application of an in vivo isolated perfusion circuit to an implanted lung. This study aimed to explore the effectiveness of IVLP vs conventional post-lung transplant (LTx) extracorporeal membrane oxygenation (ECMO) treatment using an experimental swine LTx PGD model. METHODS: After 1.5-hour warm ischemia of the donor lungs, a left LTx was performed. Following the confirmation of PGD development, pigs were divided into 3 groups (n = 5 each): control (no intervention), ECMO, and IVLP. After 2 hours of treatment, a 4-hour functional assessment was conducted, and samples were obtained. RESULTS: Significantly better oxygenation was achieved in the IVLP group (p ≤ 0.001). Recovery was confirmed immediately and maintained during the following 4-hour observation. The IVLP group also demonstrated better lung compliance than the control group (p = 0.045). A histologic evaluation showed that the lung injury score and terminal deoxynucleotidyl transferase dUTP nick end labeling assay showed significantly fewer injuries and a better result in the wet-to-dry weight ratio in the IVLP group. CONCLUSIONS: A 2-hour IVLP is technically feasible and allows for prompt recovery from PGD after LTx. The posttransplant short-duration IVLP strategy can complement or overcome the limitations of the current practice for donor assessment and PGD management.


Assuntos
Lesão Pulmonar , Transplante de Pulmão , Disfunção Primária do Enxerto , Animais , Suínos , Pulmão , Transplante de Pulmão/efeitos adversos , Perfusão , Lesão Pulmonar/patologia
12.
Environ Toxicol ; 39(1): 377-387, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37782690

RESUMO

Fine particulate matter (PM2.5 ) has been shown to induce lung injury. However, the pathophysiological mechanisms of PM2.5 -induced pulmonary injury after different exposure times are poorly understood. In this study, we exposed male ICR mice to a whole-body PM2.5 inhalation system at daily mean concentration range from 92.00 to 862.00 µg/m3 for 30, 60, and 90 days. We found that following prolonged exposure to PM2.5 , pulmonary injury was increasingly evident with significant histopathological alterations. Notably, the pulmonary inflammatory response and fibrosis caused by PM2.5 after different exposure times were closely associated with histopathological changes. In addition, PM2.5 exposure caused oxidative stress, DNA damage and impairment of DNA repair in a time-dependent manner in the lung. Importantly, exposure to PM2.5 eventually caused apoptosis in the lung through upregulation of cleaved-caspase-3 and downregulation of Bcl-2. Overall, our data demonstrated that PM2.5 led to pulmonary injury in a time-dependent manner via upregulation of proinflammatory and fibrosis-related genes, and activation of the DNA damage response. Our findings provided a novel perspective on the pathophysiology of respiratory diseases caused by airborne pollution.


Assuntos
Lesão Pulmonar , Camundongos , Masculino , Animais , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/patologia , Camundongos Endogâmicos ICR , Material Particulado/toxicidade , Pulmão/patologia , Estresse Oxidativo/genética , Fibrose
13.
Am J Transplant ; 24(2): 293-303, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37734444

RESUMO

Donor shortage is a major problem in lung transplantation (LTx), and the use of lungs from elderly donors is one of the possible solutions in a rapidly aging population. However, the utilization of organs from donors aged >65 years has remained infrequent and may be related to a poor outcome. To investigate the molecular events in grafts from elderly donors early after LTx, the left lungs of young and old mice were subjected to 1 hour of ischemia and subsequent reperfusion. The left lungs were collected at 1 hour, 1 day, and 3 days after reperfusion and subjected to wet-to-dry weight ratio measurement, histological analysis, and molecular biological analysis, including RNA sequencing. The lungs in old mice exhibited more severe and prolonged pulmonary edema than those in young mice after ischemia reperfusion, which was accompanied by upregulation of the genes associated with inflammation and impaired expression of cell cycle-related genes. Apoptotic cells increased and proliferating type 2 alveolar epithelial cells decreased in the lungs of old mice compared with young mice. These factors could become conceptual targets for developing interventions to ameliorate lung ischemia-reperfusion injury after LTx from elderly donors, which may serve to expand the old donor pool.


Assuntos
Lesão Pulmonar , Transplante de Pulmão , Traumatismo por Reperfusão , Animais , Camundongos , Envelhecimento , Inflamação/patologia , Isquemia/patologia , Lesão Pulmonar/patologia , Transplante de Pulmão/métodos , Traumatismo por Reperfusão/patologia
14.
Int J Radiat Oncol Biol Phys ; 118(1): 218-230, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37586613

RESUMO

PURPOSE: Radiation-induced pulmonary fibrosis (RIPF) is a common side effect of radiation therapy for thoracic tumors without effective prevention and treatment methods at present. The aim of this study was to explore whether glycyrrhetinic acid (GA) has a protective effect on RIPF and the underlying mechanism. METHODS AND MATERIALS: A RIPF mouse model administered GA was used to determine the effect of GA on RIPF. The cocultivation of regulatory T (Treg) cells with mouse lung epithelial-12 cells or mouse embryonic fibroblasts and intervention with GA or transforming growth factor-ß1 (TGF-ß1) inhibitor to block TGF-ß1 was conducted to study the mechanism by which GA alleviates RIPF. Furthermore, injection of Treg cells into GA-treated RIPF mice to upregulate TGF-ß1 levels was performed to verify the roles of TGF-ß1 and Treg cells. RESULTS: GA intervention improved the damage to lung tissue structure and collagen deposition and inhibited Treg cell infiltration, TGF-ß1 levels, epithelial mesenchymal transition (EMT), and myofibroblast (MFB) transformation in mice after irradiation. Treg cell-induced EMT and MFB transformation in vitro were prevented by GA, as well as a TGF-ß1 inhibitor, by decreasing TGF-ß1. Furthermore, reinfusion of Treg cells upregulated TGF-ß1 levels and exacerbated RIPF in GA-treated RIPF mice. CONCLUSIONS: GA can improve RIPF in mice, and the corresponding mechanisms may be related to the inhibition of TGF-ß1 secreted by Treg cells to induce EMT and MFB transformation. Therefore, GA may be a promising therapeutic candidate for the clinical treatment of RIPF.


Assuntos
Ácido Glicirretínico , Lesão Pulmonar , Fibrose Pulmonar , Lesões por Radiação , Animais , Camundongos , Transição Epitelial-Mesenquimal , Fibroblastos/efeitos da radiação , Ácido Glicirretínico/farmacologia , Pulmão/efeitos da radiação , Lesão Pulmonar/patologia , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/etiologia , Fibrose Pulmonar/prevenção & controle , Lesões por Radiação/patologia , Linfócitos T Reguladores , Fator de Crescimento Transformador beta1
15.
Am J Pathol ; 194(3): 338-352, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38101567

RESUMO

The high mortality rates of acute lung injury and acute respiratory distress syndrome challenge the field to identify biomarkers and factors that can be exploited for therapeutic approaches. IL-22 is a cytokine that has antibacterial and reparative properties in the lung. However, it also can exacerbate inflammation and requires tight control by the extracellular inhibitory protein known as IL-22 binding protein (IL-22BP) (Il22ra2). This study showed the necessity of IL-22BP in controlling and preventing acute lung injury using IL-22BP knockout mice (Il22ra2-/-) in the bleomycin model of acute lung injury/acute respiratory distress syndrome. Il22ra2-/- mice had greater sensitivity (weight loss and death) and pulmonary inflammation in the acute phase (first 7 days) of the injury compared with wild-type C57Bl/6 controls. The inflammation was driven by excess IL-22 production, inducing the influx of pathogenic IL-17A+ γδ T cells to the lung. Interestingly, this inflammation was initiated in part by the noncanonical IL-22 signaling to macrophages, which express the IL-22 receptor (Il22ra1) in vivo after bleomycin challenge. This study further showed that IL-22 receptor alpha-1+ macrophages can be stimulated by IL-22 to produce a number of IL-17-inducing cytokines such as IL-1ß, IL-6, and transforming growth factor-ß1. Together, the results suggest that IL-22BP prevents IL-22 signaling to macrophages and reduces bleomycin-mediated lung injury.


Assuntos
Lesão Pulmonar Aguda , Lesão Pulmonar , Síndrome do Desconforto Respiratório , Animais , Camundongos , Lesão Pulmonar Aguda/patologia , Bleomicina/efeitos adversos , Citocinas/metabolismo , Inflamação/patologia , 60552 , Pulmão/patologia , Lesão Pulmonar/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Síndrome do Desconforto Respiratório/metabolismo
16.
EBioMedicine ; 99: 104945, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38142637

RESUMO

BACKGROUND: Lung damage in severe COVID-19 is highly heterogeneous however studies with dedicated spatial distinction of discrete temporal phases of diffuse alveolar damage (DAD) and alternate lung injury patterns are lacking. Existing studies have also not accounted for progressive airspace obliteration in cellularity estimates. We used an imaging mass cytometry (IMC) analysis with an airspace correction step to more accurately identify the cellular immune response that underpins the heterogeneity of severe COVID-19 lung disease. METHODS: Lung tissue was obtained at post-mortem from severe COVID-19 deaths. Pathologist-selected regions of interest (ROIs) were chosen by light microscopy representing the patho-evolutionary spectrum of DAD and alternate disease phenotypes were selected for comparison. Architecturally normal SARS-CoV-2-positive lung tissue and tissue from SARS-CoV-2-negative donors served as controls. ROIs were stained for 40 cellular protein markers and ablated using IMC before segmented cells were classified. Cell populations corrected by ROI airspace and their spatial relationships were compared across lung injury patterns. FINDINGS: Forty patients (32M:8F, age: 22-98), 345 ROIs and >900k single cells were analysed. DAD progression was marked by airspace obliteration and significant increases in mononuclear phagocytes (MnPs), T and B lymphocytes and significant decreases in alveolar epithelial and endothelial cells. Neutrophil populations proved stable overall although several interferon-responding subsets demonstrated expansion. Spatial analysis revealed immune cell interactions occur prior to microscopically appreciable tissue injury. INTERPRETATION: The immunopathogenesis of severe DAD in COVID-19 lung disease is characterised by sustained increases in MnPs and lymphocytes with key interactions occurring even prior to lung injury is established. FUNDING: UK Research and Innovation/Medical Research Council through the UK Coronavirus Immunology Consortium, Barbour Foundation, General Sir John Monash Foundation, Newcastle University, JGW Patterson Foundation, Wellcome Trust.


Assuntos
COVID-19 , Lesão Pulmonar , Humanos , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , COVID-19/patologia , Lesão Pulmonar/patologia , Células Endoteliais , SARS-CoV-2 , Pulmão/patologia
17.
Indian J Pathol Microbiol ; 66(4): 834-838, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38084542

RESUMO

Introduction: The predominant pathology noted in the lungs of patients dying of COVID-19 is reported to be diffuse alveolar damage (DAD). Other studies have identified microthrombi to be a prominent finding of lung injury in patients affected by COVID-19. We describe the lung histopathological findings in fifteen cases of COVID-19 who died from the disease with the aim of reporting the microscopic changes in the lungs of patients dying from this disease. Materials and Methods: Lung tissues from fifteen consecutive autopsy cases of COVID-19 were studied for gross and microscopic features. The case history of the deaths was noted, and the information was analyzed. The lung damage seen was graded on a semiquantitative scale on the basis of the percentage of tissue involved. Results: Gross examination of the lungs showed multiple foci of consolidation mainly in the lower lobes of the lungs as the most commonly encountered finding. The other significant pattern was congested and edematous lungs with areas of consolidation. Microscopic assessment of lung sections showed 8 out of the 15 cases showing changes of the exudative phase of diffuse alveolar damage, whereas two cases were in the proliferative phase. Hyaline membranes were one of the common findings along with intra-alveolar edema and interstitial edema. Four cases showed changes in organizing phase. Other findings were microthrombi formation, fungal abscesses, dilated and collapsed alveoli, intra-alveolar hemorrhage, and acute neutrophilic pneumonia. Conclusion: DADand interstitial pneumonitis were the most striking features in our autopsy study. Features of different phases of diffuse alveolar damage were seen to coexist in the same patient indicating the temporal heterogeneity of the ongoing lung injury in these patients.


Assuntos
COVID-19 , Lesão Pulmonar , Pneumonia , Humanos , COVID-19/patologia , Lesão Pulmonar/patologia , Pulmão/patologia , Alvéolos Pulmonares/patologia , Edema/patologia
18.
Exp Biol Med (Maywood) ; 248(23): 2440-2448, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38158699

RESUMO

The mammalian target of rapamycin (mTOR) inhibitors, everolimus (but not dactolisib), is frequently associated with lung injury in clinical therapies. However, the underlying mechanisms remain unclear. Endothelial cell barrier dysfunction plays a major role in the pathogenesis of the lung injury. This study hypothesizes that everolimus increases pulmonary endothelial permeability, which leads to lung injury. We tested the effects of everolimus on human pulmonary microvascular endothelial cell (HPMEC) permeability and a mouse model of intraperitoneal injection of everolimus was established to investigate the effect of everolimus on pulmonary vascular permeability. Our data showed that everolimus increased human pulmonary microvascular endothelial cell (HPMEC) permeability which was associated with MLC phosphorylation and F-actin stress fiber formation. Furthermore, everolimus induced an increasing concentration of intracellular calcium Ca2+ leakage in HPMECs and this was normalized with ryanodine pretreatment. In addition, ryanodine decreased everolimus-induced phosphorylation of PKCα and MLC, and barrier disruption in HPMECs. Consistent with in vitro data, everolimus treatment caused a visible lung-vascular barrier dysfunction, including an increase in protein in BALF and lung capillary-endothelial permeability, which was significantly attenuated by pretreatment with an inhibitor of PKCα, MLCK, and ryanodine. This study shows that everolimus induced pulmonary endothelial hyper-permeability, at least partly, in an MLC phosphorylation-mediated EC contraction which is influenced in a Ca2+-dependent manner and can lead to lung injury through mTOR-independent mechanisms.


Assuntos
Células Endoteliais , Lesão Pulmonar , Animais , Camundongos , Humanos , Células Endoteliais/metabolismo , Everolimo/farmacologia , Everolimo/metabolismo , Lesão Pulmonar/patologia , Endotélio Vascular , Proteína Quinase C-alfa/metabolismo , Proteína Quinase C-alfa/farmacologia , Rianodina/metabolismo , Rianodina/farmacologia , Pulmão/metabolismo , Fosforilação , Células Cultivadas , Serina-Treonina Quinases TOR/metabolismo , Mamíferos
19.
Int J Mol Sci ; 24(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38139330

RESUMO

Serum amyloid A (SAA) is a family of proteins, the plasma levels of which may increase >1000-fold in acute inflammatory states. We investigated the role of SAA in sepsis using mice deficient in all three acute-phase SAA isoforms (SAA-TKO). SAA deficiency significantly increased mortality rates in the three experimental sepsis mouse models: cecal ligation and puncture (CLP), cecal slurry (CS) injection, and lipopolysaccharide (LPS) treatments. SAA-TKO mice had exacerbated lung pathology compared to wild-type (WT) mice after CLP. A bulk RNA sequencing performed on lung tissues excised 24 h after CLP indicated significant enrichment in the expression of genes associated with chemokine production, chemokine and cytokine-mediated signaling, neutrophil chemotaxis, and neutrophil migration in SAA-TKO compared to WT mice. Consistently, myeloperoxidase activity and neutrophil counts were significantly increased in the lungs of septic SAA-TKO mice compared to WT mice. The in vitro treatment of HL-60, neutrophil-like cells, with SAA or SAA bound to a high-density lipoprotein (SAA-HDL), significantly decreased cellular transmigration through laminin-coated membranes compared to untreated cells. Thus, SAA potentially prevents neutrophil transmigration into injured lungs, thus reducing exacerbated tissue injury and mortality. In conclusion, we demonstrate for the first time that endogenous SAA plays a protective role in sepsis, including ameliorating lung injury.


Assuntos
Lesão Pulmonar , Sepse , Animais , Camundongos , Lesão Pulmonar/patologia , Proteína Amiloide A Sérica/genética , Sepse/patologia , Pulmão/patologia , Quimiocinas , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
20.
Front Public Health ; 11: 1309708, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38145083

RESUMO

Objective: In January 2023, a rare event of collective inhalation paraquat poisoning occurred in Shandong, China. To analyze the clinical characteristics of an event of respiratory tract paraquat poisoning through inhalation. Methods: Clinical data from eight patients with paraquat inhalation poisoning were retrospectively analyzed. Results: The patients were mainly exposed to paraquat via the respiratory tract. The main clinical manifestations were ocular and respiratory irritation. Lung computed tomography (CT) showed that all eight patients had varying degrees of lung injury, mainly manifesting as exudative lesions. Laboratory tests revealed arterial blood gas hypoxemia, abnormal white blood cell count, and increased neutrophil ratio. Sufficient glucocorticoid impact therapy was effective, and all eight patients survived. Conclusion: Eight patients experienced chest tightness, shortness of breath, and varying degrees of lung injury due to inhalation of paraquat through the respiratory tract. The early use of glucocorticoids and other comprehensive treatment measures, active prevention and treatment of lung infections, and protection of organ function have beneficial effects in such cases.


Assuntos
Lesão Pulmonar , Paraquat , Humanos , Lesão Pulmonar/patologia , Estudos Retrospectivos , Pulmão/patologia , Dispneia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA